Preview

Philology and Culture

Advanced search

The analysis of text complexity parameters from the perspective of different writing styles (based on PET and OGE corpora)

https://doi.org/10.26907/2074-0239-2022-67-1-39-46

Abstract

   The article presents results of the multiple factor analysis of 117 OGE (Basic State Examination) texts and 83 texts of Cambridge PET and considers the correlation of the Flash-Kincaid readability index, narrativity, lexical diversity (MTLD) and text complexity in different text types. The evaluation of text complexity parameters was conducted with the help of the online service TextInspector. The study confirms the correlation of the above-mentioned parameters with text complexity. The research indicates that the Flash-Kincaid readability index, narrativity and lexical diversity are lower in OGE texts. Thus, OGE texts are less complex than PET texts. The range of metrics of FKGL, narrativity and MTLD in PET is far more narrow, which indicates the core of typological metrics. The style of texts has a direct influence on their complexity. According to the data, publicistic texts are the most complex and popular science texts are the least. The results of the research can be used by test developers, researchers, educational organizations and teachers.

About the Authors

M. Begaeva
Kazan Federal University; “Text Analytics” Laboratory
Russian Federation

Maria Nikolaevna Begaeva, graduate student, research assistant

420008

18 Kremlyovskaya Str.

Kazan



D. Gizatulina
Kazan Federal University; SESC "IT Lyceum KFU"
Russian Federation

Diana Yuryevna Gizatulina, graduate student

420008

18 Kremlyovskaya Str.

Kazan



References

1. Solnyshkina, M. I., Gafiyatova, E. V., Kazachkova, M. B. (2020). Instrumenty otsenki slozhnosti teksta: sovremennaya paradigm [Text Difficulty Estimation Tools: A Modern Paradigm]. Nauchnoe nasledie E. I. Passova v kontekste razvitiya inoyazychnogo obrazovaniya : Materialy Mezhdunarodnoi nauchnoi konferentsii, posvyashchennoi 90-letiyu so dnya rozhdeniya E. I. Passova, Lipetsk, 01–02 dekabrya 2020 goda / Pod obshchei redaktsiei V. B. Tsar'kovoi, A. A. Lyulyushina. Lipetsk: Lipetskii gosudarstvennyi pedagogicheskii universitet imeni P. P. Semenova-Tyan-Shanskogo, pp. 251– 263. (In Russian)

2. Solnyshkina, M. I., Kazachkova, M. B., Khar'kova, E. V. (2020). Instrumenty izmereniya slozhnosti tekstov na angliiskom yazyke [Tools for Measuring Text Complexity in English]. Inostrannye yazyki v shkole. No. 3, pp. 15– 21. (In Russian)

3. Ziganshina, Ch. R. (2020). Kachestvennye parametry slozhnosti teksta (na materiale khudozhestvennykh i nauchno-populyarnykh tekstov PIRLS) [Qualitative Parameters of Text Complexity (Based on PIRLS Fiction and Popular Science Texts)]. Mir nauki, kul'tury, obrazovaniya. No. 5 (84), pp. 388–391. (In Russian)

4. Cambridge Assessment English. URL: https://cambridgeenglish.org/ (accessed: 08. 12. 2021). (In English)

5. Text Inspector: The Professional Web Tool for Analyzing Texts. URL: https://textinspector.com/work-flow (accessed: 20. 10. 2021). (In English)

6. Biber, D. (1993). Representativeness in Corpus Design. Oxford, Literary and Linguistic Computing, No. 8, pp. 243– 257. (In English)

7. Solnyshkina, M. I., Zamaletdinov, R. R., Gafiyatova, E. V., Gizatulina, D. Yu., Begaeva, M. N. (2021). Mnogofaktornyi analiz slozhnosti teksta [Multi-variate Text Complexity Analysis]. Inostrannye yazyki v shkole. No. 2, pp. 28– 34. (In Russian)

8. Polyakova, V. V., Shabrova, N. V. (2015). Osnovy teorii statistiki : uchebnoe posobie [Fundamentals of the Theory of Statistics : A Textbook]. 145 p. Ekaterinburg, Izdatel'stvo Ural'skogo universiteta. (In Russian)

9. McNamara, D. S., Graesser, A. C., McCarthy, P. M., Zh. Cai (2014). Automated Evaluation of Text and Discourse with Coh-Metrix. 285 p. New York, Cambridge University Press. (In English)

10. Biber, D., Conrad, S., Reppen, R. (1998). Corpus Linguistics: Investigating Language Structure and Use. 300 p. Cambridge, Cambridge University Press. (In English)

11. Kraal, A., Koornneef, A., Broek, P. (2018). Processing of Expository and Narrative Texts by Low and High-Comprehending Children. Reading and Writing. New York, Springer, 31 (9), pp. 2017–2040. (In English)

12. Vygotskii, L. S. (1935). Dinamika umstvennogo razvitiya shkol'nika v svyazi s obucheniem [The Dynamics of the Schoolchild's Mental Development in Relation to Teaching and Learning]. L. S. Vygotskii. Umstvennoe razvitie detei v protsesse obucheniya. Moscow-Leningrad, pp. 33–52. (In Russian)

13. Solnyshkina, M. I., Kisel'nikov, A. S. (2015). Parametry slozhnosti ehkzamenatsionnykh tekstov [Exam Text Complexity]. Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 2: Yazykoznanie. No. 1. (In Russian)

14. Solnyshkina, M. I., Gabitov, A. I., Shayakhmetova, L. Kh., Ilyasova, L. G., Akbarova, S. A. (2017). Text Complexity in Russian Textbooks on Social Studies. Revista Publicando, No. 4, pp. 597 – 606. (In English)

15. Solovyev, V. D., Ivanov, V. V., Akhtiamov, R. B. (2019). Dictionary of Abstract and Concrete Words of the Russian Language: A Methodology for Creation and Application. Journal of Research in Applied Linguistics. No. 10, pp. 215–227. (In English)


Review

For citations:


Begaeva M., Gizatulina D. The analysis of text complexity parameters from the perspective of different writing styles (based on PET and OGE corpora). Philology and Culture. 2022;(1):39-46. (In Russ.) https://doi.org/10.26907/2074-0239-2022-67-1-39-46

Views: 117


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4756 (Print)