Manipulative technologies in a large amount of linguistic data: Social media
https://doi.org/10.26907/2782-4756-2024-78-4-146-153
Abstract
The article presents the results of our study on manipulative techniques based on a large amount of linguistic data from social media and focused on the implementation of a major urban development project in the field of road transport construction in Moscow. The research was conducted using data from social networks, video hosting platforms, microblogs, blogs, forums and review websites (3,358,590 tokens, the audience of 17,688,221). Created during the study, the database contains user-generated content and their digital footprints reflecting user reactions. The data analysis was conducted from a cognitive perspective, employing a neural network text analysis, content analysis, sentiment analysis, digital aggression analysis and lexical association analysis. The Brand Analytics monitoring system was used for data collection, while GPT-4o, GPT-4o mini, GPT-4, TextAnalyst 2.32 and AutoMap were used for the data analysis and interpretation, with the Tableau platform used for visual analytics. The analysis of the data revealed mythological manipulation, speech and psychotechnologies. When manipulative techniques are employed in the media space, rhetorical tropes and figures, sophisms and eristic tricks are actively used. The adaptation of these techniques to the specifics of digital communication allows for indirect influence on the audience, significantly increasing the effectiveness of the impact, which can, in turn, lead to heightened conflict potential and social tension.
About the Authors
M. A. PilgunRussian Federation
Maria A. Pilgun - Doctor of Philology, Professor, Russian State Social University; Lomonosov Moscow State University.
1 Leninskie Gory, Moscow, 119991
I. V. Erofeeva
Russian Federation
Irina V. Erofeeva - Doctor of Philology, Professor, Kazan Federal University.
18 Kremlyovskaya Str., Kazan, 420008
References
1. Dzyaloshinskii, I. M., Pil'gun, M. A. (2024). Ritorika: uchebnik i praktikum dlya vuzov [Rhetoric: A Textbook and Practical Course for Universities]. 232 p. Moscow, Yurait. (In Russian)
2. Pil'gun, M. A., Erofeeva, I. V. (2024). Manipulyativnye tehnologii v mediaprostranstve: kognitivnyi aspekt [Manipulative Technologies in the Media Space: A Cognitive Aspect]. Kognitivnye issledovaniya yazyka. No. 2–2 (58), pp. 598-–604. (In Russian)
3. Rudinow, T. (1997). Manipulation. 234 р. N.-Y. (In English)
4. Kalandarov, K. Kh. (1998). Upravlenie obshhestvennym soznaniem: Rol' kommunikativnykh protsessov [Management of Public Consciousness: The Role of Communication Processes]. Ros. ekol. akad. 79 p. Moscow, Gumanitarnyi tsentr “Monolit”. (In Russian)
5. Burd'e, P. (1993). Sotsiologiya politiki [Sociology of Politics]. 336 p. Moscow, Socio-Logos. (In Russian)
6. Dotsenko, E. L. (1996). Psikhologiya manipulyatsii [Psychology of Manipulation]. 344 p. Moscow, CheRo. (In Russian)
7. Arnaudo, D. Bradshaw, S., Ooi, H. H., Schwalbe, K., Zakem, V. and Zink, A. (2021). Combating Information Manipulation: A Playbook for Elections and Beyond. 54 p. Stanford, Stanford university. (In English)
8. Li, P. H., Y.-Y. Huang., Shei, C. Hsieh, H.-P. ExoFIA: Deep Exogenous Assistance in the Prediction of the Influence of Fake News with Social Media Explainability. Applied Sciences10.3390/app13116782 13. No. 11, pр. 6782–6789. (In English)
9. Caled, D., Silva, M. J. (2022). Digital Media and Misinformation: An Outlook on Multidisciplinary Strategies against Manipulation. In Journal of Computational Social Science. Vol. 5, pp. 123–159. (In English)
10. Martin-Neira, J. I., Trillo-Domнnguez, M., and Olvera-Lobo, M. D. (2023). Science Journalism against Disinformation: Decalogue of Good Practices in the Digital and Transmedia Environment. Scientific Journal of Communication and Emerging Technologies. No. 21(1), pp. 1699–2407. (In English)
11. Stahl, B. C., Schroeder, D., Rodrigues, R. (2023). Manipulation. In: Ethics of Artificial Intelligence; Springer Briefs in Research and Innovation Governance. Pp. 53–61. Cham, Palgrave Macmillan, Springer. (In English)
12. Wach, K., Duong, C., Ejdys, J., Kazlauskaite, R, Korzynski, P., Mazurek, G., Paliszkiewicz, J. and Ziemba, E. (2023). The Dark Side of Generative Artificial Intelligence: A Critical Analysis of Controversies and Risks of ChatGpt. Entrepreneurial Business and Economics Review. No. 11(2), pp. 7–30. (In English)
13. Wang. C., Tang, F., Zhang, Y. et al. (2023). Towards Harmonized Regional Style Transfer and Manipulation for Facial Images. Comp; Visual Media 9. Pp. 351–366. (In English)
14. Kharlamov, A. A., Pilgun, M. (2023). Perception of the Situation: Social Stress and Well-Being Indices. Lecture Notes in Networks and Systems, 544 LNNS. Pp. 778–790. (In English)
15. Gradosel'skaya, G. V., Shheglova, T. E. (2019). Teoreticheskie osnovy issledovaniya informatsionnykh voln v sotsial'nykh setyakh [Theoretical Foundations of the Study of Information Waves in Social Networks]. Upravlenie razvitiem krupnomasshtabnyh sistem MLSD'2019. Pp. 1196–1199. Moscow, IPU RAN. (In Russian)
16. Jung, K. G. (2020). Psihologiya perenosa [The Psychology of the Transference]. 134 p. Moscow, Medkov S. B. (In Russian)
17. Dzyaloshinskii, I. M. (2006). Manipulyativnye tehnologii v SMI: Uchebno-metodicheskoe posobie [Manipulative Technologies in the Media: A Teaching Aid]. 44 p. Moscow, “Gumanitarnyi institute”. (In Russian)
18. Kara-Murza S. (2003). Manipulyatsiya soznaniem [Manipulation of Consciousness]. 490 p. Moscow, Eksmo. (In Russian)
19. VKontakte - URL: https://m.vk.com/ (accessed: 10.08.2019). (In Russian)
20. Dzen – URL: https://m.dzen.ru (accessed: 11.09.2019). (In Russian)
21. VKontakte - URL: https://m.vk.com/ (accessed: 15.08.2019). (In Russian)
22. VKontakte - URL: (https://m.vk.com/ (accessed: 19.09.2019). (In Russian)
23. Dzen – URL: https://m.dzen.ru (accessed: 17.09.2019). (In Russian)
24. VKontakte - URL: https://m.vk.com/ (accessed: 25.08.2019). (In Russian)
Review
For citations:
Pilgun M.A., Erofeeva I.V. Manipulative technologies in a large amount of linguistic data: Social media. Philology and Culture. 2024;(4):146-153. (In Russ.) https://doi.org/10.26907/2782-4756-2024-78-4-146-153